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Abstract: The rapid increase in the number of vehicles has brought significant challenges to energy
conservation and environmental sustainability. To solve these problems, various frameworks and
models based on intelligent connected vehicles (ICVs) have been identified for road capacity im-
provement and fuel consumption reduction. In this paper, an eco-driving controller with ICVs was
first proposed by combining vehicular dynamics with wireless communication technologies, where
the nodes that can implement perception and control in a simulated complex traffic environment
have been deployed. Then, the information of the surrounding environment, including the preceding
vehicles, was obtained through a wireless communication module based on the technology of vehicle
to everything (V2X). Besides, the advanced model predictive control (MPC) strategy was integrated
into the ICV controller with the objectives of minimizing the driving spacing and improving environ-
mental sustainability. Finally, a co-simulation platform for ICVs based on a robot operating system
(ROS) and PreScan software was constructed, and the dynamic characteristics of the controller were
verified in three aspects, including car-following behaviors, fuel efficiency improvement, and carbon
dioxide emission reduction. The proposed controller showed that it can reduce fuel consumption by
3.71% and reduce carbon dioxide emissions by 3.42%, in the scenarios of a preceding vehicle with
constant velocity, and by 6.77% and 7.91%, respectively, in a preceding vehicle with variable velocity
scenario. The demonstrated experimental results show that the proposed controller can effectively
reduce fuel consumption and emissions during car-following.

Keywords: car-following model; eco-driving; intelligent connected vehicles (ICVs); model predictive
control (MPC); sustainable transportation

1. Introduction

In recent years, environmental problems caused by vehicle exhaust emissions have
attracted widespread attention from industry to academia. The ICVs that integrate sensing,
wireless communication, and control technologies are used to solve the above problems.
Human-driven vehicles (HVs) are controlled by human beings with determining velocity
while driving, which requires human drivers to observe with eyes and make decisions
with brains. The process is time consuming because of people’s thinking and actions taken.
Therefore, the HVs must keep a large spacing with the preceding vehicle to guarantee
the driving safety [1,2]. It is well known that less driving resistance causes lower fuel
consumption and less environmental pollution [3]. Keeping a small spacing between
vehicles can make the air resistance minimized while driving. This is especially apparent
in the air resistance of vehicles at a high velocity [4]. Besides, ICVs can be controlled
automatically, according to commands derived from information of the surrounding traffic
state, which can reduce the system response time significantly. That is to say, ICVs can keep
a small spacing from other vehicles, theoretically, can improve road capacity, and can reduce
fuel consumption and environmental pollution. In addition, ICVs can relieve the pressure
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of human drivers effectively, improve the convenience of driving, and enhance traffic
safety. Therefore, ICVs can solve the urban traffic congestion problems and environmental
pollution issues [5].

Extensive studies have been carried out to establish the effective car-following models
of ICVs by controlling vehicular velocities [6–8]. Newell [9] proposed a car-following model
with a velocity control function, which considered the delay caused by environmental and
human factors to ensure driving safety. This model defined a control strategy based on the
spacing between two vehicles and a set of differential-difference equations. Yu et al. [10]
proposed a confined full velocity difference (c-FVD) model to solve the problem of accelera-
tion overshoot of the FVD model in a specific traffic scenario, which limited the acceleration
of the existing FVD model to produce milder vehicular trajectories. These classical models
explain the car-following behavior of two adjacent vehicles. However, they did not fully
consider the influence of other preceding vehicles and the environment on the car-following
behavior; thereby, the advantages of ICVs cannot be sufficiently utilized. Some scholars
have applied wireless communication technology to car-following models. Naus et al. [11]
implemented a cooperative adaptive cruise control (CACC) system based on the feed-
forward controller, which enables a small spacing between vehicles while ensuring safety.
Lidstrom et al. [12] developed and analyzed a controller for CACC when the fleet has a
leading vehicle. Besides, Talavera et al. [13] proposed a CACC system with combining pre-
cise location and V2X communication, which has a positive impact on reducing congestion
in dense traffic conditions. These studies aimed to improve traffic conditions by applying
the information of preceding vehicles to adjust the behaviors of following vehicles. Re-
cently, various machine learning approaches have been used to study car-following models.
Hao et al. [14] proposed a data-driven car-following model considering information from a
field data set. Lin et al. [15] proposed a hybrid model to learn the car-following behavior
from the real driving data of human drivers. These machine learning-based models have
higher requirements for the dataset, which lead to limitations in adaptability for more
application scenarios. Most of the above studies have not considered the combination of
autonomous driving technology and V2X communication technology in their solutions,
which drive us to bridge the important gap in this paper.

Eco-driving is often used to refer to a vehicle operation that minimizes energy con-
sumption and carbon dioxide emissions [16]. In terms of eco-driving, Yang et al. [17]
proposed an eco-driving system for multiple signal intersection scenarios, with the objec-
tive of reducing fuel consumption by optimizing the vehicular trajectory. Mintsis et al. [18]
proposed an enhanced velocity planning algorithm for connected vehicles in the proxim-
ity of signalized intersections, which ensures the effectiveness of energy and efficiency.
Shao and Sun [19] proposed a vehicular velocity control strategy that can improve the
fuel efficiency for connected autonomous vehicles in the scenario of driving through an
intersection. Guo et al. [20] developed a hybrid algorithm that integrates deep Q-learning
with policy gradient for the vehicles driving along signalized corridors. This algorithm can
reduce fuel consumption by learning continuous longitudinal acceleration and deceleration.
However, their attentions were on the velocity optimizations of the vehicle in the signalized
intersection. Groelke et al. [21] developed an eco-driving strategy based on an MPC model
for heavy trucks, which can realize fuel conservation while ensuring safe driving spacing.
However, this study did not consider the lateral control of the vehicle. Ding et al. [22]
proposed an optimal method for the speed profiles of vehicles on curved roads to realize
the purpose of eco-driving. Mamouei et al. [23] proposed a system-optimal approach to
improve the efficiency of fuel usage and traffic flow for the benefits of the entire road
network. Fleming et al. [24] proposed a vehicular velocity optimization algorithm based on
real-time data from global positioning system (GPS) and radar on a vehicle. Experiments in
a driving simulator showed that the algorithm was effective in reducing fuel consumption.
These studies consider the strategies of a vehicle that is not affected by other vehicles
for eco-driving.
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In summary, it is worth noting that the current cooperative car-following systems of
ICVs still lack the effective technology with the integration of considerable strategies in
exhaust emissions for sustainable transportation. In our work, an eco-driving controller
for ICVs was studied to reduce fuel consumption and exhaust emission by considering
real-time data and lateral and longitudinal control, so that the environmental transportation
can be effectively achieved. The main contributions of this work are summarized as follows:

• The real-time data from multiple ICVs were applied to propose the eco-driving con-
troller, which includes longitudinal and lateral speeds, desired acceleration, and
forward steering angle. With these data, the proposed controller can respond quickly
and accurately to the behavior of preceding vehicles and thereby reduce unnecessary
braking and moderating acceleration.

• Based on more roadside data in V2X communication, the proposed eco-driving con-
troller uses model predictive control theory that considers road curvature to optimize
the car-following behavior of ICVs.

• With the above two advantages, a novel eco-driving objective function considering
the optimal energy consumption, longitudinal and lateral velocity was established for
ICVs in complex roads. Furthermore, fuel consumption and carbon dioxide emissions
can be reduced significantly.

The remainder of this paper is organized as follows. In Section 2, an eco-driving
controller based on ICVs is proposed and constructed. Then, the co-simulation platform of
ICVs is designed and established in Section 3, where the ROS and PreScan software are
applied in the development of the platform. In Section 4, a three-car-following platoon is
verified by the co-simulation platform, and the experimental results are demonstrated and
analyzed. Finally, Section 5 concludes the paper.

2. The Cooperative Car-Following System Based on Eco-Driving

The cooperative car-following system consisted of three layers including perception,
decision, and control, where the information transmission between layers depends on
various communications, as shown in Figure 1. In this system, the perception layer can
obtain the information of the current vehicular operation state, traffic signal timing, and
environmental information through the integrated sensors, including multiline LiDAR,
V2X communication module, high-resolution camera, and millimeter-wave radar. Based
on the information of the perception layer, the decision layer can compute the desired
vehicular spacing, the desired velocity, the desired acceleration, and the desired front
steering angle according to the current traffic state. Finally, the control layer will convert
the received information into the corresponding control commands to operate the actuators,
such as throttle, braking, and steering, through the vehicular controller area network bus
(CAN-Bus).
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In the succeeding sections, we first describe the hardware that composed the three layers
of the cooperative car-following system, then the communication networks between
three layers are described, followed by which the car-following model based on eco-driving
for the decision layer is established.

2.1. The Hardware Structure of ICVs

The hardware structure of the ICV was composed of sensors, controllers, and actuators,
where the sensors of the perception layer include a GPS positioning module, spacing
measurement module, vision module, V2X communication module, and so on, as shown
in Figure 2. The V2X communication module was used to communicate information with
surrounding ICVs. Besides, an industrial computer equipped with an eco-driving controller
is the core of the decision layer. The actuators in the control layer mainly included the
throttle control unit, the brake control unit, and the steering control unit.
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2.2. The Communication Network of the Cooperative Car-Following System

The interaction of the information flow between any of the two vehicles is defined as
communication topology. In this proposed cooperative car-following system, information
exchange among vehicles through different communication topologies can be described as
Figure 3.
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As shown in Figure 3, ICVs can accurately obtain real-time information, such as
vehicular position, acceleration, velocity, spacing, and traffic signal timing, through multiple
sensors on the perception layer. Then, communication is established between ICVs through
V2X communication to identify the driving movements of surrounding ICVs, and they
share the collected information. The communication protocols between two ICVs are
shown in Table 1. Through V2X communication, the preceding ICV will transfer its velocity,
acceleration, position, and other state metrics to the following vehicle. After receiving the
information of the preceding vehicle, the decision layer of the following vehicle will fuse
its own information and environmental information to calculate the optimal acceleration.
Finally, the desired control parameters will be transferred to actuators on the control layer
via the CAN-Bus.

Table 1. V2X communication protocols of the cooperative car-following system.

Title Byte Length Contents

VehID 1 Vehicular identification number
VehLoc 2 Position
VehDis 2 Spacing
VehVel 2 Velocity
VehAcc 2 Acceleration

Time 4 Timestamp
Angle 2 Front steering angle

2.3. The Car-Following Model Based on Eco-Driving for ICVs

The decision layer is the core of the cooperative car-following system, where the
eco-driving controller was designed for ICVs in the consideration of car-following behavior,
fuel consumption, and emissions.

2.3.1. The Spacing Policy for ICVs

The car-following model focused on the influences between preceding vehicles and
the following vehicle. When the velocity of the preceding vehicle changes, the velocity
of the following vehicle needs to be changed simultaneously to ensure safety. The car-
following model will be formulated based on the kinematics of vehicles and will further be
quantitatively analyzed. Then, the optimal spacing between two vehicles and vehicular
velocity will be achieved, accordingly. As shown in Figure 4, the vehicle i is the preceding
vehicle and the vehicle i + 1 is the following vehicle. All vehicles in this model share state
information through wireless communication.
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Compared with the traditional constant safety (CS) spacing, the constant time headway
(CTH) considers the relationship between the spacing of two vehicles and the real-time
velocity. In this paper, the CTH is considered as the desired spacing between the preceding
vehicle and the following vehicle. The desired spacing is expressed as Equation (1):

dtar(t) = d0 + hv(t) (1)

where d0 > 0 is the minimum safe spacing that needs to be maintained when two vehicles
are standstill, h > 0 is the time gap that needs to be maintained between two vehicles, and
v(t) represents the velocity of the vehicle at the moment t.
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2.3.2. The Fuel Consumption and Emission Model for ICVs

A fuel consumption and emission model is very important for evaluating the effective-
ness of the eco-driving controller, which can be estimated by velocity and acceleration [25]
as in Equations (2) and (3):

C(t) = α + β1PT(t) +
(

β2ma2(t)v(t)
)

a>0
(2)

PT(t) = max
{

0, d1v(t) + d2v2(t) + d3v3(t) + ma(t)v(t)
}

(3)

where C(t) denotes the instantaneous fuel consumption, α stands for the idle fuel con-
sumption, β1 and β2 are constant efficiency factors, PT(t) indicates the total power of the
vehicle,m is the mass of the vehicle,d1, d2 and d3 are resistance coefficients, and a(t) is the
acceleration of the vehicle at the moment t.

The real-time emission rate of an ICV can be expressed by the measure of effectiveness
(MOE) [26–28]. Ahn et al. [29] presented that the real-time MOE of a vehicle at moment t is
a function of the real-time velocity v(t) and acceleration a(t), which can be expressed as
Equation (4):

ln(MOEe) = ∑3
i=0 ∑3

j=0(K
e
i,j × v(t)i × a(t)j) (4)

where MOEe is real-time emission rate, Ke
i,j represents the model regression coefficient for

MOEe, i is the power exponent of velocity, and j is the power exponent of acceleration.

2.3.3. The Eco-Driving Controller for ICVs

We define ∆r(t) and ∆v(t) as the current spacing and velocity difference between the
i-th vehicle and its preceding vehicle; the formulation of the current spacing and velocity
difference can be expressed as Equations (5) and (6):

∆r(t) = ri−1(t)− ri(t) (5)

∆v(t) = vi−1(t)− vi(t) (6)

where ri(t) and ri−1(t) represent the displacement of the i-th vehicle and its preceding vehi-
cle, and vi(t) and vi−1(t) represent the velocity of the i-th vehicle and its preceding vehicle.

Then, the error er(t) between the current spacing ∆r(t) and the desired spacing dtar(t)
can be formulated as Equation (7):

er(t) = ∆r(t)− dtar(t) (7)

The velocity error ev(t) can be expressed as:

ev(t) = ∆v(t) (8)

In this controller, lateral control should be considered when the vehicle drives in a
curved road. We donate vy as the lateral velocity,

.
ϕ as the variation rate of yaw angle, ey as

the lateral distance between the vehicle and the centerline, eϕ as the error of the yaw angle,
er as the spacing error, and ev as the velocity error. Besides, δ f and ai represent the front
steering angle and acceleration, respectively. ρ and ai−1 represent the road curvature and
the acceleration of the preceding vehicle. l f and lr are the longitudinal distance from the
center of gravity to the front and rear tires. Iz denotes the yaw moment of inertia of the
vehicle. C f and Cr represent the tires cornering stiffness. m is the mass of the vehicle, and vx
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refers to the longitudinal velocity. We define x =
[

vy
.
ϕ ey eϕ er ev

]T ; u =

[
δ f
ai

]
;

d =

[
ρ

ai−1

]
. The model of the following vehicles can be expressed as:

.
x = Ax + Bu + Wd (9)

where A =



C f +Cr
mvx

l f C f−lrCr
mvx

0 0 0 0
l f C f−lrCr

Izvx

l f
2C f +lr2Cr

Izvx
0 0 0 0

1 0 0 vx 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0


; B =



−C f
m 0

− l f C f
Iz

0

0 0
0 0
0 −h
0 −1


and

W =



0 0
0 0
0 0
−vx 0

0 0
0 1

. By discretizing Equation (9), the above model can be expressed by

Equation (10) as:
x(k + 1) = Ax(k) + Bu(k) + Wd(k) (10)

where A =



(C f +Cr)ts
mvx

+ 1 (l f C f−lrCr)ts
mvx

0 0 0 0

(l f C f−lrCr)ts
Izvx

(
l2f C f +lr2Cr

)
ts

Izvx
+ 1 0 0 0 0

ts 0 1 vxts 0 0
0 ts 0 1 0 0
0 0 0 0 1 ts
0 0 0 0 0 1


; B =



− C f ts
m 0

− l f C f ts
Iz

0

0 0
0 0
0 −hts
0 −ts


; W =



0 0
0 0
0 0
−vxts 0

0 0
0 ts

; ts is the sampling interval.

Predictive state vectors and input vectors at the p-th step can be defined as:

Xk =
[

x(k + 1|k) x(k + 2|k) · · · x(k + p|k)
]T (11)

Uk =
[

u(k|k) u(k + 1|k) · · · u(k + p− 1|k)
]T (12)

Dk =
[

d(k|k) d(k + 1|k) · · · d(k + p− 1|k)
]T (13)

Therefore, according to Equation (10), the prediction state vector Xk can be expressed
as Equation (14):

Xk = Ψx(k) + ΘUk + ΩDk (14)

where Ψ =


A
A2

...
Ap

,Θ =


B · · · 0 0

AB B · · · 0
...

...
. . .

...
Ap−1B Ap−2B · · · B

, and Ω =


W · · · 0 0

AW W · · · 0
...

...
. . .

...
Ap−1W Ap−2W · · · W

.

It has been noticed that one of the most effective ways to reduce fuel consumption is
to reduce the acceleration of the vehicle, according to Equations (2) and (3). In order to
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optimize car-following behavior and reduce fuel consumption, we combined Equation (2)
with Equation (14), and the object function can be formulated as

J = XT
kPXk+UT

kQUk + R
∫ k+p−1

k
C(t) dt (15)

where P and Q are the weight matrices, and R is the weight factor.
In order to ensure safety, the vehicle was subject to the following velocity constraints as

vmin ≤ v(t) ≤ vmax (16)

where vmin and vmax represent the minimum and maximum velocity of the vehicle during
the process of driving.

Acceleration is related to the engine performance and is subject to the following
constraints, which can be demonstrated as:

amin ≤ a(t) ≤ amax (17)

where amin represents the minimum acceleration of the vehicle during the process of
driving, and amax represents the maximum acceleration of multiple preceding vehicles
during the process of driving.

Moreover, the error between vehicular spacing and desired spacing should be subject
to the following constraints:

0 ≤ er(t) ≤ er,max (18)

lim
t→∞

er(t) = 0 (19)

where er,max is set up as the max error between vehicular spacing and desired spacing.
Therefore, the control quantity can be concluded as the following problem:

MinJ = XT
kPXk+UT

kQUk + R
∫ k+p−1

k C(t) dt

s.t.vmin ≤ v(t) ≤ vmax

amin ≤ a(t) ≤ amax

0 ≤ er(t) ≤ er,max

lim
t→∞

er(t) = 0

(20)

The first two terms (XT
kPXk+UT

kQUk) in Equation (20) were used to optimize car-

following behavior. The third term (R
∫ k+p−1

k C(t) dt) in Equation (20) was used to constrain
fuel consumption. In order to minimize the objective function J, the controller calculated
the acceleration and front steering angle of the vehicle.

3. Co-Simulation Platform Design for ICVs Based on ROS/PreScan
3.1. Structure of the Co-Simulation Platform

PreScan is a physics-based simulation platform used for the development of vehicular
dynamic systems with building traffic scenarios, simulating road environments, and further
controlling vehicular driving states. It has been extensively used because of the intuitive
simulation results provided for vehicle controllers. ROS is a software architecture used to
develop robot programs.

Due to the high cost and risk of real vehicle experiments, a hardware-in-loop (HIL)
experimental platform was established based on PreScan and ROS in our paper. In this
platform, the control parameters of each vehicle can be evaluated by PreScan and then
be transferred to ROS. After that, the received command was executed in ROS. A HIL
simulation environment was be established with the above experimental platform to verify
the proposed eco-driving controller. The construction of the simulation environment is
shown as Figure 5.
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Figure 5. The construction of the co-simulation platform.

3.2. Nodes Design for ICVs Based on ROS

In this paper, ROS was used to design the program of the cooperative driving vehicle
with the advantages of modular programming and distributed computing. In ROS, the
program codes are stored and operated at nodes. Topics are named buses for nodes to
exchange information. Each node runs independently and delivers information through
publishing and subscribing topics.

The vehicle control nodes of ROS are shown in Figure 6, where each vehicle obtained
data through node /receive_data which mainly includes time and control parameters. After
being processed by node /receive_data, the data was published through topic /cmd_vel.
The subscribers of node /throttle_control and /brake_control executed the commands
through the topic /cmd_vel to control the vehicle. Vehicular sensors mainly included
millimeter wave radar and status sensor, where node /radar can obtain the spacing from
the preceding vehicle, and node /self can obtain the velocity, acceleration, and other
information of the vehicle.
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4. Experimental Results and Discussion

There was a 2-km road section in this experiment. As shown in Figure 7, a platoon
consisting of a leading vehicle and two following vehicles was applied in each group of
experiments. The change of the spacing between any of two following vehicles can be
observed from the top view.

In this scenario, we selected road curvature, vehicular velocity, and spacing, which are
critical parameters as the inputs of the eco-driving controller. The desired acceleration and
the desired front steering angle of each connected vehicle were defined as outputs. Besides,
a set of information containing acceleration, velocity, position, fuel consumption, and
carbon dioxide emissions were selected as the main indexes. Among them, the acceleration,
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velocity, and position were obtained from the ROS, and the fuel consumption and carbon
dioxide emissions were calculated by Equations (2)–(4). In order to verify the effectiveness
of the proposed controller, a strategy for the control of a standard MPC was proposed and
developed. In addition, we considered the eco-driving constraints in the controller, and
the improved MPC strategy was re-developed with the objective of being environmentally
sustainable. The working procedure of the improved MPC strategy is shown in Figure 8.
In the HIL simulation experiments, the emission coefficient of carbon dioxide was used to
value the MOE [30], shown in Table 2. The parameters defined in Equations (2) and (3) in
this paper are set up as Table 3.
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Figure 7. The resulting visualization of 3D simulation for the cooperative car-following system based
on eco-driving.
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Table 2. The emission coefficients for the MOE of carbon dioxide [30].

Ke
i,j a(t)≥0 a(t)<0

(mg/s) j = 0 j = 1 j = 2 j = 3 j = 0 j = 1 j = 2 j = 3

i = 0 −7.735 0.2295 −5.61 × 10−3 9.773 × 10−5 −7.735 −0.01799 −4.27 × 10−3 1.8829 × 10−4

i = 1 0.02799 0.0068 −7.722 × 10−4 8.38 × 10−6 0.02804 7.72 × 10−3 8.375 × 10−4 3.387 × 10−5

i = 2 −2.228 × 10−4 −4.402 × 10−5 7.90 × 10−7 8.17 × 10−7 −2.199 × 10−4 −5.219 × 10−5 −7.44 × 10−6 2.77 × 10−7

i = 3 1.09 × 10−6 4.80 × 10−8 3.27 × 10−8 −7.79 × 10−9 1.08 × 10−6 2.47 × 10−7 4.87 × 10−8 3.79 × 10−10

The parameters of the eco-driving controller of ICVs are displayed in Table 4, where p
is the prediction horizon, c is the control horizon, and s is the control period. The velocity of
the vehicle fell in [15, 30] m/s, and the acceleration was set up as [−3, 3] m/s2. In addition,
the initial states of vehicles are shown in Table 5.
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Table 3. Parameters related to fuel consumption.

Parameters Values Units

α 0.666 mL/s
β1 0.072 /
β2 0.0344 /
m 1680 kg
d1 0.269 /
d2 0.0171 /
d3 0.000672 /

Table 4. Parameter settings of the model predictive control strategy.

Parameters Values Units

vmin 15 m/s
vmax 30 m/s
amin −3 m/s2

amax 3 m/s2

er,max 2 m
p 10 ms
c 1 ms
s 100 ms

Table 5. Initial states of ICVs.

Initial State Units Preceding
Vehicle

Following
Vehicle 1

Following
Vehicle 2

Position m 50 25 0
Velocity m/s 10 10 10
Space m 0 25 25

There were two experimental scenarios with constant acceleration and variable velocity
involved in the HIL simulation experiments.

Scenario 1: Constant acceleration of the preceding vehicle.

In this scenario, the preceding vehicle drives with the acceleration of 1 m/s2. Once its
velocity reaches 30 m/s, the vehicle will keep moving at a constant velocity. The real-time
states are shown as Figures 9–16.
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Figure 12. The accelerations of the following vehicle under the improved MPC strategy in Scenario 1.

From Figures 9–12, the velocities and accelerations of vehicle 2 and vehicle 3 were
compared with the standard and the improved MPC strategies. The velocity was gradually
adjusted to 30 m/s after 30 s, and the accelerations were stable at 0. However, vehicle 2
and vehicle 3 showed their deceleration at the beginning of the standard MPC strategy.
When vehicle 1 accelerated, the acceleration of the following vehicle under the improved
MPC strategy was very small, which facilitated the convergence rate of the acceleration.
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In the same state of vehicle 1, the fluctuations in the accelerations of the following ve-
hicles occurred under the standard MPC between 10 s and 20 s, which was caused by
the acceleration at 10 s. As shown in Figure 12, after vehicle 1 suddenly accelerated, the
maximum acceleration of vehicle 2 could be up to 1.7 m/s2, which reflects the moderate
acceleration control of the improved MPC strategy. The accelerations in Figures 11 and 12
reflect that the change rate of acceleration of the standard MPC strategy is greater than that
in the improved MPC strategy, which affects the fuel consumption and emissions of the
vehicle. In addition, it can be seen from the maximum acceleration in these two figures that
the improved MPC strategy was more adaptable to constraints compared to the standard
MPC strategy.
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Figure 14. The positions of the following vehicle under the improved MPC strategy in Scenario 1.

Figures 13 and 14 compare the movements of vehicle 2 and vehicle 3. The trends show
that they were consistent with the movement of vehicle 1 under the two car-following
strategies. As the velocity increased, the spacing between vehicle 1 and vehicle 2 increased,
which was in line with the spacing caused by the CTH strategy. There was no intersection
in position in these two figures, which indicates that there was no collision between any of
the two vehicles.

The fuel consumption and carbon dioxide emissions under the two car-following are
shown in Figures 15 and 16. The vehicles consumed more fuel and emitted more carbon
dioxide when accelerating. After 10 s, the fuel consumption and carbon dioxide emissions
in the standard MPC strategy were more than that in the improved MPC strategy, which
were caused by the acceleration fluctuations of the vehicles in the standard MPC strategy.
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The total fuel consumption with the improved MPC strategy was 0.4393 L at 80 s, which
was about 3.71% less than that with the standard MPC strategy. As shown in Figure 16,
compared to the standard MPC strategy, the total carbon dioxide emissions under the
improved MPC strategy were reduced by 4.32%.
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Scenario 2: Variable velocity of the preceding vehicle.
In a cooperative car-following model, the preceding vehicle may adjust its velocity

according to the road state and the signal state. The scenario of vehicles with varying
velocities was designed and the extensive experiments were conducted. In order to test the
car-following behaviors and fuel consumption, the preceding vehicle will run at a variable
velocity from 15 to 32.5 m/s.

From Figures 17–20, we can see that the velocity and acceleration of the following
vehicle changed with the preceding vehicle under two car-following strategies. It was
shown that the trends of these two vehicles were the same, but the decelerations of vehicle
2 and vehicle 3 were displayed at the beginning of the standard MPC strategy, which is
shown in Figure 17. The minimum velocity of the standard MPC strategy was 13.7 m/s, and
the maximum velocity was 34 m/s, while the minimum velocity with the improved MPC
strategy was 15 m/s and the maximum velocity was 32.7 m/s. Therefore, the improved
MPC strategy had superiority in velocity control. With the same state of the preceding
vehicle, the accelerations of the following vehicle vibrated more frequently along with the
change of velocity under the standard MPC strategy, which was unexpected to the control
of the vehicle.
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The higher fuel conservation and lower carbon dioxide emissions can be produced
by the improved MPC strategy by predicting the running state of the preceding vehicle
and executing a smaller acceleration. As shown in Figure 20, although the velocity of the
preceding vehicle changed frequently, the acceleration of the following vehicle changed
relatively moderately, which indicates that the improved MPC strategy achieved relatively
stable control of the following vehicle.
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Figures 21 and 22 demonstrate that the movements of the following vehicles were
consistent with the trend of the preceding vehicle under two car-following strategies.
According to the CTH strategies, the spacing between the preceding vehicle and the
following vehicles increased along with the velocity. There was not any intersection in
these three lines in position, which indicates that there was no collision between any of the
two vehicles. From Figures 19 and 20, we can see that the maximum value of acceleration
of the following vehicles was 3.4 m/s2 under the standard MPC strategy and 2 m/s2 under
the improved MPC strategy, which demonstrates that the improved MPC strategy can
effectively avoid rapid acceleration.
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Figures 23 and 24 show the performances of fuel consumption and carbon dioxide
emissions under two car-following strategies. It was evident that the vehicles consumed
more fuel and emitted more carbon dioxide when accelerating, while the improved MPC
strategy reduced some unnecessary acceleration processes and reduced fuel consumption
and emissions. According to Figure 23, the total fuel consumption under the improved
MPC was 0.37351 L at 80 s, which was about 6.77% less than that in the standard MPC
strategy. As shown in Figure 24, the carbon dioxide emissions under the improved MPC
strategy were reduced by 7.91% by comparing them with the standard MPC strategy, which
proves the effectiveness of the improved MPC strategy.
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To evaluate the accuracy of the simulation results, we conducted 10 experiments in
each of the two scenarios and recorded the total fuel consumption for 80 s, as shown in
Table 6.

Table 6. Total fuel consumption of 10 experiments (liter).

1 2 3 4 5 6 7 8 9 10

Scenario
1

MPC 0.45623 0.45622 0.45623 0.45621 0.45624 0.45620 0.45625 0.45623 0.45622 0.45623
Improved

MPC 0.43930 0.43931 0.43931 0.43928 0.43929 0.43930 0.43932 0.43931 0.43933 0.43930

Scenario
2

MPC 0.40063 0.40061 0.40064 0.40063 0.40062 0.40063 0.40061 0.40060 0.40065 0.40063
Improved

MPC 0.37351 0.37348 0.37350 0.37353 0.37351 0.37349 0.37351 0.37350 0.37353 0.37349

Based on the data in Table 6, we could calculate the confidence intervals for the
strategies in the two scenarios. In Scenario 1, the confidence intervals for the stan-
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dard MPC strategy and the improved MPC strategy at the confidence level of 95% were
0.400625 ± 0.0000089 and 0.373505 ± 0.0000097, respectively. In Scenario 2, the confidence
intervals for the standard MPC strategy and the improved MPC strategy at the confidence
level of 95% were 0.456226 ± 0.0000084 and 0.439305 ± 0.0000084, respectively. Therefore,
the accuracy of the simulation results can be guaranteed.

5. Conclusions

In this paper, we proposed an eco-driving controller based on the characteristics of
the vehicular dynamics system for ICVs. The proposed controller employed the improved
MPC strategy to optimize the acceleration of the following vehicle, while reducing fuel
consumption and carbon dioxide emissions and simultaneously ensuring the safety of the
following vehicle. The effectiveness of the eco-driving controller was also verified through
a co-simulation platform composed of ROS and PreScan software. The final experimental
results showed that the proposed controller can reduce fuel consumption by 3.71% and
reduce carbon dioxide emissions by 3.42% in the scenario of a preceding vehicle with
constant velocity. In the scenario of a preceding vehicle with variable velocity, the proposed
controller can reduce fuel consumption by 6.77% and reduce carbon dioxide emissions
by 7.91%.

The control of the proposed eco-driving controller may be affected if conventional
vehicles are involved in the ICVs. In order to explore the effective solutions to this scenario,
we consider developing an improved eco-driving controller by taking the impact of vehicle
diversity into consideration in the future. In addition, we will study the impact of lateral
control on fuel consumption and emissions and introduce lane-changing scenarios into
the simulation.
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