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Abstract: Integration technologies of artificial intelligence (AI) and autonomous vehicles play impor-
tant roles in intelligent transportation systems (ITS). In order to achieve better logistics distribution
efficiency, this paper proposes an intelligent actuator of an indoor logistics system by fusing multiple
involved sensors. Firstly, an actuator based on a four-wheel differential chassis is equipped with
sensors, including an RGB camera, a lidar and an indoor inertial navigation system, by which au-
tonomous driving can be realized. Secondly, cross-floor positioning can be realized by multi-node
simultaneous localization and mappings (SLAM) based on the Cartographer algorithm Thirdly the
actuator can communicate with elevators and take the elevator to the designated delivery floor.
Finally, a novel indoor route planning strategy is designed based on an A* algorithm and genetic
algorithm (GA) and an actual building is tested as a scenario. The experimental results have shown
that the actuator can model the indoor mapping and develop the optimal route effectively. At the
same time, the actuator displays its superiority in detecting the dynamic obstacles and actively
avoiding the collision in the indoor scenario. Through communicating with indoor elevators, the
final delivery task can be completed accurately by autonomous driving.

Keywords: logistics system; multi-sensor fusion; autonomous driving; simultaneous localization
and mapping (SLAM); genetic algorithm (GA)

1. Introduction

Modern logistics technology, as one of most significant measures in intelligent trans-
portation systems (ITS), can significantly improve the efficiency of package delivery and
reduce the cost of logistics systems. It is inevitable that indoor logistics consume too
much time on work such as documents, package and device delivery, etc. Therefore,
wheeled autonomous actuators, described in this paper, provide an effective technological
foundation in an indoor logistics system across different floors in order to improve the
logistics efficiency.

In logistics distribution system, the functions of data fusion and route planning are
mainly realized based on a robot operating system (ROS), which is a stable and reliable
collaborative technology designed for the Stanford artificial intelligence robot (STAIR)
project led by the Artificial Intelligence Laboratory at Stanford University (CA, USA), and
the Personal Robotics Program of Willow Garage [1]. This advanced technology is suitable
for complex scenarios of multiple nodes and multiple tasks in logistics systems. For the
characteristics of ROS, increasing attention has been focused on self-location and route
planning for logistics mobile robots.

To improve self-location accuracy, the localization algorithms of indoor robots were de-
veloped from traditional GPS to simultaneous localization and mapping (SLAM) algorithm
based on multiple sensors [2]. Raible et al. [3] developed a low-cost differential GPS system
which is suited for mobile robotics applications. The system enhanced positioning accuracy
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compared with a single receiver system. However, the signal of GPS would be shielded by
buildings if a receiver is located in an indoor environment. Khaliq et al. [4] built a global
navigation gradient map on a floor with 1500 embedded radio frequency identification
devices (RFID) to solve global path planning problems. This paper verified the validity of
the method through three cases. However, the construction of the specific map required a
lot of time and outlay, which is most challenging for promoting this method to a wide range
of applications. With the development of concurrent mapping and localization (CML),
the SLAM algorithm can be applied by vision. Davison et al. [5] proposed a method of
building a real-time 3D scene based on the single-camera SLAM with a wide-angle lens.
This paper demonstrated the implementation of a real-time (30 frames per second), fully
3D SLAM algorithm through a hand-held wide-angle camera. However, the visual SLAM
algorithm needed a lot of computing resources, and it was difficult to judge the distance.
Blanco [6] proposed a measurement that applied Rao–Blackwellized particle filters (RBPFs)
to SLAM by simultaneously considering the uncertainty of the path and map. Rajam
and Roopsingh [7] discussed the application effect of Gmapping and Cartographer on the
SLAM algorithm of lidar, which was applied to optimize the parameters of 2D lidar to
reflect the SLAM impact. Vlaminck et al. [8] proposed a complete 3D lidar points cloud
data closed-loop detection and correction system. A novel matching algorithm with the
global points cloud data was proven to improve the efficiency of the existing technology
and the graphics processing unit (GPU) operation speed by 2–4 times.

In the problem of the shortest path planning, the Dijkstra algorithm, as the basis of
routing planning method, can accurately calculate the path by searching a large number
of nodes [9]. However, high complexity and difficulties impede the usage of the Dijkstra
algorithm. Barzdins et al. [10] proposed a bi-directional Dijkstra algorithm with the charac-
teristics of biontic search, which was nearly three times faster than the standard Dijkstra
algorithm. Sierra [11] adopted the best first search algorithm (BFS) for the shortest path
problem. BFS, as a greedy algorithm, could find the target path the fastest in a simple
environment. DuchoĖ et al. [12] designed a route planning based on a modified A* algo-
rithm for a logistics environment. A* algorithm, combined with Dijkstra algorithm and
BFS algorithm, can guarantee the rapidity and accuracy of the shortest path problem. How-
ever, for physical distribution problems, a target was often replaced by a series of targets,
and the increase in distribution order would upgrade the problem to a nondeterministic
polynomial (NP) problem. Therefore, several kinds of bionic optimization algorithms
were proposed to solve the multi-task problems. Chedjou and Kyamakya [13] proposed
a dynamic shortest path algorithm based on neural networks. In this research, a model
based on a recurrent neural network (RNN) was constructed and solved by dynamic neural
networks (DNNs), which was proven to be efficient, robust and convergent by experiments.
Elhoseny et al. [14] proposed a path planning method for robots in dynamic environments
based on genetic algorithms. The computational efficiency of the path was proven to be
improved by a Bezier curve. Dewang et al. [15] proposed a path planning algorithm based
on adaptive particle swarm optimization (APSO) for the trajectory design of a robot. In
this research, the robot equipped with the path planning algorithm of APSO can quickly
identify obstacles and reach the destination.

With self-location and route planning algorithms, several types of research on logistics
robots and wheeled actuators were developed over the past decade [16]. Rosenthal and
Veloso [17] developed an actuator decision-making algorithm to seek help in multiple
tasks. Moreover, the effectiveness of the algorithm has been proven in logistics distribution
systems. Zhang et al. [18] proposed a scheduling method which aims to balance the
energy consumption and reputation gains based on multi-task requests to unmanned
aerial vehicles. Purian and Sadeghian [19] provided a route planning method based on
a colonial competitive algorithm for logistics robots in an unfamiliar scenario. Abdulla
et al. [20] presented a logistics wheeled actuator which can communicate with indoor
elevators based on ROS. Bae and Chung [21] designed a route planning method based on
a primal-dual heuristic, by which the travel distances are minimized by heterogeneous
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actuators. Mosallaeipour et al. [22] proposed a sequential production matrix for task
scheduling in logistics systems. Khosiawan et al. [23] developed an autonomous actuator
in indoor circumstances, where a differential evolution particle algorithm was used to solve
the multi-task delivery problems.

In summary, current logistics distribution systems are still lacking indoor distribution
research considering multi-point and multi-floor route planning for flexible delivery. There-
fore, the integrated logistics actuator with a novel route planning algorithm is investigated
in this study.

The rest of this paper is organized as follows. In the next section, an autonomous
actuator based on ROS for the indoor logistics system is designed. The indoor route
planning algorithm is then formulated based on multi-sensor fusion. Finally, the intelligent
indoor logistics system is tested in a real scenario. Through the final results, conclusions
are summarized and future research directions are proposed.

2. Materials and Methods
2.1. ROS Platform

In this paper, a wheeled autonomous actuator is designed for 5–6 h endurance with
a maximum load of 50 kg. This actuator is equipped with an electrical chassis, sensors
and an industrial personal computer (IPC) based on ROS. Through data from a lidar, an
RGB camera and an indoor inertial navigation, the actuator can realize the objectives of
recognition, collision avoidance, target overtaking and SLAM.

The logistics system consists of a perception layer, a decision layer and a control layer,
as shown in Figure 1. Environmental data sets are obtained by nodes of a lidar, a camera,
an indoor inertial navigation and other sensors in the perception layer. After that, the ROS
controller translates them into commands of running, collision avoidance and overtaking.
Meanwhile, the decision layer receives processed data from the perception layer and the
optimal indoor route planning algorithm is calculated based on SLAM. Finally, the route
recommendation is sent to the control layer and the wheeled autonomous actuator drives
along the optimal route. Other feedback information is returned to the perception layer’s
intelligent devices through the wireless communication module.

Figure 1. The system structure of the wheeled autonomous actuator of logistics system.
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2.1.1. Control System

ROS is the core operating system of the actuator. With the advantages of cross
compilation, open source and distributed management, the core system can enhance the
reuse rate and modularization of the robot code. The flowchart of the ROS platform is
shown in Figure 2. The environmental data are obtained and stored in the nodes of the
perception layer; after receiving topics, the commands are sent to the control layer to drive
the motors of the wheeled actuator.

Figure 2. The flow of the ROS platform.

2.1.2. Perception System

The environmental data are detected by the actuator through a 40-channel lidar, a
70-degree-angle RGB camera and an indoor inertial navigation module. The driving state
of the actuator is also identified and located by the algorithm of multi-sensor fusion in
the controller. The data between nodes are transferred through user datagram protocol
(UDP). In this system, a DNN is used to distinguish targets from different distances [24].
Compared with traditional neural networks, there are more input layers, hidden layers
and output layers in DNN, and a Boolean output can quickly determine whether visual
data (t, u, v, w, h) and point cloud data (x, y, z) are matched with the reference type. If there
is no matched type, the next set of the same z and tan α will be read quickly. However, if
there is a matched type, the (x, y) in points cloud data will be fused with the target type
t, and environmental awareness data (x, y, t) will be published through ROS nodes. The
whole data fusion process is shown in Figure 3.

The multi-sensor fusion is used to recognize the type and detect the position of dis-
turbed targets in the navigation, which is the basis for collision avoidance and overtaking.

Collision avoidance is a stopping behavior that normally occurs in two situations:
when a dynamic target is moving in front of the actuator, and when a static target is
stuck in the way of navigation. An example of collision avoidance is shown in Figure 4,
which considers a dynamic target in the scenario. When a pedestrian passes in front of the
actuator, as a response, the actuator will wait until the pedestrian has passed by.
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Figure 3. Flowchart of data fusion.

Figure 4. An example of collision avoidance.
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Overtaking is a basic decision when the actuator encounters a static target. In this
situation, the actuator will determine whether the surrounding environment is suitable
for overtaking. If it decides yes, the actuator will overtake the target and keep track
of monitoring so as to make collision avoidance decisions in real time. Otherwise, the
feedback will be sent for further judgement in terms of the target’s characteristics (dynamic
or static). The flow chart of collision avoidance and overtaking is shown in Figure 5.

Figure 5. The flow chart of collision avoidance and overtaking.

It is known that self-positioning realization by the SLAM algorithm is the benchmark
of route planning and navigation. In this scenario, lidar SLAM is used as the positioning
function of the actuator and has been improved based on the Cartographer algorithm by
Google [25]. In our paper, SLAM algorithm is proposed with the static indoor mapping
as the first step. Then, more accurate map construction leads the logistics system to be
more efficient, which can be improved with closed-loop testing, optimization and manual
adjustment. The final indoor mapping will be established according to the information of
different positions and floors. The framework of SLAM is shown in Figure 6.
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Figure 6. The framework of simultaneous localization and mapping (SLAM).

As shown in Figure 6, the process of SLAM in this paper is constructed as follows:

(1) Initial point mapping is a process of constructing the map at the initial position around
the actuator. By continuously adjusting the attitude, the actuator can improve the
map around the initial point.

(2) The interprocess mapping is a process in which the actuator constantly moves, collects
and integrates the points cloud data of the neighboring environment. Lidar constantly
scans the new surrounding environment, which can create a new map environment
through the Levenberg–Marquardt algorithm combining the information of the IMU
and the odometer.

(3) The closed-loop testing refers a test in the track of the driving road with a form of a
closed graph. The existing errors can be mined through the large closed-loop test in
the driving process. Moreover, the repeated lidar point cloud data are fused to form a
new connection loop and correct the data in the loop.

(4) The optimization is the process of optimizing the built image through Google’s
Ceres solver library. Through the function of mathematical calculation of automatic
derivation in Ceres, data variables are adjusted and optimized to make the estimated
value close to the real observation data. The whole post optimization is to adjust the
data variables continuously under the framework of maximum likelihood estimation
(MLE) to obtain the optimal optimization variables.

(5) The manual adjustment is a process to optimize maps by manual operation. The error
of temporary obstacles or dead angle of lidar scanning in the process of map building
can be corrected, and the moving area of the actuator can also be limited.

The maps including all corridors, offices, laboratories and warehouses that the actuator
can pass through have been built by SLAM and include set connection points to make
the actuator quickly read the map of the next area. An initial map of a laboratory as an
example constructed by SLAM is shown in Figure 7.

Figure 7. An initial map of a laboratory as an example built by SLAM.
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2.2. Indoor Route Planning Method

The indoor route planning algorithm mainly includes two parts: the route planning of
a single target and the distribution algorithm of multiple targets. The route planning of a
single target is realized by the heuristic guidance of the A* algorithm based on Euclidean
distance and selection of multiple elevators. The distribution of multiple targets is realized
by the novel algorithm proposed in this paper.

2.2.1. Static Route Network Establishment Based on A* Algorithm

The route planning of a single target is achieved based on the A* algorithm. The
heuristic function is introduced to evaluate expanded nodes, and the most promising nodes
are selected from these nodes to expand until the target node is recognized. According
to the definition of the A* algorithm, the evaluation function of node n is represented as
Equation (1):

f (n) = g(n) + h(n) (1)

where g(n) represents the cost from the initial node to node n and h(n) represents the heuris-
tic estimated cost from node n to target node. The whole process is divided into five steps:
preprocessing, initialization, labels update, node selection and termination conditions.

(1) Preprocessing.

In this step, the maximum speed vmax in the road network is calculated and the time
from node i to the target node vd is estimated.

(2) Initialization.

In this step, we set i = vo, pi = 0, j 6= i, S = {i} and W = Ø, where vo is the starting point,
S is the node set which includes the shortest route, W is the node set which excludes the
shortest route and pi is the precursor node of i.

(3) Labels update.

Each subsequent node j of i is updated in this step: lj = cij + hj, where lj is the label
of node j, cij is the cost from node i to j and hi is heuristic estimated cost from node j to
destination. If {j} /∈W, W = W + {j}.

(4) Node selection.

In this step, k is denoted as the smallest node in W, which is lk = min(lj). k = j, toi = toi + cik,
where toi is total time from the initial node, S = S + {k}, W = W − {k} and set pi = i, i = k.

(5) Judgement for termination conditions.

Once i = vd, the whole process is finished. tod = toi implies the shortest route with
driving time, then the shortest route can be generated from the node set S; otherwise, it
will be returned to step 2 for further processing.

If the initial node and the destination node are located on different floors, vm(p) will
be added as the mid-point, where p is the number of intelligent elevators. We denote fmn as
the cost from the floor m to n by elevator. Therefore, the plan with the lowest cost can be
presented as Equation (2):

tod = min[tom(p) + tmd(p) + f mn ] (2)

As seen above, the minimum cost tod between two points and the relative node set S
are obtained by the A* algorithm. Therefore, in the distribution of multiple points, the cost
and node set between any two points can be obtained by the A* algorithm similarly. There
are two types of route planning based an A* algorithm: direction and non-direction. The
directional route planning is more accurate than the non-directional route planning, which
can distinguish bidirectional routes between points. However, in a typical office building,
navigation routes in different directions are usually the same. Therefore, non-directional
route planning is selected to reduce the calculation time in this paper.
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In our paper, the route planning of crossing floors is designed based on elevator
points. The application of intelligent elevators in this system mainly includes the following
three stages:

(1) Connection: First, the whole building is in the range of a wireless communication
network to ensure that all intelligent devices in the building can be connected. Then,
the intelligent elevator is connected to the intelligent logistics system through IIoT
(the Industrial Internet of Things). Finally, the actuator can maintain communication
with the intelligent elevators through OTA (over the air) technology.

(2) Preparation: The actuator will send the messages of target elevator, target floor and
estimated arrival time information to the intelligent elevator system through the
wireless communication module, which allow the elevator to reach the target floor in
time and wait for the actuator.

(3) Operation: The actuator can directly navigate into the designated elevator based on
the SLAM algorithm. Then, the actuator is transported to the floor of its next target
by the elevator and continues to deliver goods.

2.2.2. Mathematical Model Establishment of Multi-Point Logistics Distribution Systems

The mathematical model of multi-point logistics distribution schemes is established
as follows. An actuator delivers goods to multiple nodes from a certain starting point vo in
total k times. The location vi and the mass of goods qi of total L target nodes are certain. The
cost tij and distance dij between any nodes can be calculated from the above A* algorithm.
The maximum load Q of the actuator and the maximum driving distance D of the primary
delivery are certain. We denote nk as the number of target nodes for the k-th delivery, Sk as
the route set of the k-th route and element rki as the node i in route k. In order to formulate
the objective function, the minimum delivery time T of all target nodes is selected and
established as Equation (3):

minT =
K

∑
k=1

[
nk

∑
i=1

trk(i−1)rki + trknk
rk0 ] (3)

It is required to arrange the indoor delivery route reasonably and optimize the objec-
tive function effectively. First of all, the load capacity of the goods on the actuator should
not exceed the maximum load capacity Q in each distribution route, which should be
satisfied as Equation (4):

nk

∑
i=1

qrki ≤Q (4)

Secondly, the distance of each distribution route should not exceed the maximum
driving distance D, which is shown in Equation (5):

nk

∑
i=1

drk(i−1)rki + drknk
rk0 ≤ D (5)

Thirdly, all targets can be delivered within k times, which can be calculated in Equation (6):

K

∑
k=1

nk = L (6)

Then, the node set of each indoor route is recorded in Sk, which is denoted in Equation (7):

Sk = {rki|rki ∈ (1, 2, . . . L), i = 1, 2, . . . nk} (7)
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In summary, the optimal algorithm can be expressed as Equation (8):

minT =
K
∑

k=1
[

nk
∑

i=1
trk(i−1)rki + trknk

rk0 ]

s.t.
nk
∑

i=1
qrki ≤Q

nk
∑

i=1
drk(i−1)rki + drknk

rk0 ≤ D

K
∑

k=1
nk = L

Sk = {rki|rki ∈ (1, 2, . . . L), i = 1, 2, . . . nk}

(8)

2.2.3. Mathematical Model Solution

In this section, a fast solution based on GA and hill climbing (HC) is established to
calculate the above objective function. The optimal solution is achieved iteratively through
the following steps [14]:

(1) Initial definition.

According to the characteristics of indoor distribution routes, the wheeled actuator
drives along a specific route from the starting point. Therefore, the corridor of a floor
is defined and divided into L sections from 1 to L. To ensure the diversity of the initial
population, the initial population is set up, consisting of feasible solutions generated
by multiple algorithms such as random algorithm, nearest neighbor heuristic algorithm,
Solomon insertion algorithm and impact algorithm.

(2) Fitness evaluation.

The fitness of each solution is used to judge whether the solution satisfies the environ-
mental constraints. In this paper, the individual coding method of direct target arrangement
is used to determine the route distribution scheme, and the penalty weight of Pw is set up
for the route scheme that violates the constraints. The fitness Mi of the distribution scheme
can be calculated by the following Equation (9):

Mi =
1

T + K·Pw
(9)

(3) Selection.

The selection operation is to decide whether to enter the next generation population or
not according to the solution’s adaptability. In this paper, the selection strategy combined
with the best individual reservation is employed. According to the size of the fitness, the
selection probability Pi is obtained by Equation (10):

Pi =
Mi

n
∑

i=1
Mi

(10)

Then, the cumulative selection probability Psi corresponding to a solution is calculated
by Equation (11):

Psi =
i

∑
j=1

Pi (11)

A number Pr ∈ [0, 1) is randomly generated. If Psi ≤ Pr < Psi+1, solutions are selected
to enter the next generation population.

(4) Crossover.

In the selected new population, solutions should carry out crossover recombination
for Pc according to the crossover probability, except the one in first place. In this paper, two-
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point crossover is used to randomly select two mating positions in two parent solutions,
which can still produce diversity when they have the same parents.

(5) Mutation.

In order to keep the diversity of the population, the inner solutions will exchange J
times based on the probability of mutation Pm, which is inspired by the Random algorithm.

(6) Hill climbing.

In order to enhance the local exploration ability of a genetic algorithm, a series of
genetic operations will be processed, and the hill climbing operation will be implemented
by neighborhood search [26]. In this paper, the gene transposition operator is used to
achieve the hill climbing operation by obeying the following rule: randomly select two
genes from individuals and exchange their positions; if the fitness value increases, the
transposed solutions will be taken as new ones; repeat this step until the exchange number
Ph is reached.

(7) Judgement for termination conditions.

Once the above cycle reaches the maximum number of iterations Pn or the solution’s
fitness does not improve within Pt iterations, the cycle will be stopped and the best route
will be output; otherwise, step 2 will be revisited.

Therefore, the optimal solutions are obtained in the population through multiple
genetic operations, and then replace the original solutions by those based on HC. Finally,
the optimal route planning is implemented through ROS. The flow chart of the whole
indoor route planning process is shown in Figure 8.

Figure 8. The flowchart of the indoor route planning.
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3. Results and Discussion

In this section, a typical business building Boyuan in North China University of
Technology, Shijingshan District, Beijing, China, is selected as a real scenario to test the
logistics system. The building consists of 11 floors with 300 rooms. A 3D coordinate
system for the typical office building is established, as shown in Figure 9, where x and y
are coordinates of plane positions and f is the floor coordinate. The origin of the coordinate
system is set at the southwest corner of the building, which can ensure that all targets are
positive in the coordinate system. The logistics center, with the coordinates (28.7, 55.2, 1), is
set at the gate of the building, which is shown in Figure 10. The waiting time for customers
to pick up the goods from the target is not included in the total distribution time. The
intelligent elevator can be called to the designated floor in advance, so the waiting time of
the elevator can be ignored.

Figure 9. The tested scenario in Beijing.

Figure 10. Schematic diagram of starting point position.
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In the distribution process, the current delivery mass will affect the speed of the
actuator. However, limitations of speed at 2 m/s and acceleration at 1.75 m/s2 for actuator
are set due to the risk of pedestrian safety. Therefore, in this actuator, there is enough
power to meet the speed demand at full load. The distribution process of the experiment is
shown in Figure 11.

Figure 11. The distribution process of the experiment.

In the experiment, delivery distance, delivery time and calculation time are selected
as indexes. To better explain the meaning of experimental process and indexes, a scheme
generated by A*+GAHC algorithm is selected as an example. There is one starting point,
twenty target points and three sets of elevators in the example. Firstly, the delivery distance
and delivery time between each two points of twenty-one points are calculated by A*
algorithm. If they are on different floors, the delivery distance and delivery time of three
different elevators to the target are calculated, which obtained a total of 584 pairs of data.
Then, the distribution scheme is solved by the GAHC algorithm, which includes three
delivery routes: “0-1-7-5-14-8-6-0”, “0-17-11-18-4-3-20-13-0” and “0-12-16-15-2-19-10-0”.
Taking “0-1-7-5-14-8-6-0” as an example, the actuator departs from the starting point,
delivers the targets numbered 1, 7, 5, 14, 8 and 6, and returns to the starting point. The
calculation time is the time required to generate the scheme read by the timer. Finally, after
distribution, the total distance and total time of distribution are obtained by reading the
data of the odometer and timer.

Crossover rate and mutation rate, as the critical parameters of GA, affect the exper-
imental results. Therefore, we try to explore the optimal values of them for the better
performance. With the same scenes and targets, crossover rate is set up from 0.1 to 1.0, and
mutation rate is defined as 0.1. The experimental results are shown in Table 1 and Figure 12.

Table 1. Influence of crossover rate on GA.

Crossover Rate Total Distance (m) Total Time (min) Calculation Time (s)

0.1 1956.4 43.8 7.20
0.2 1615.6 43.8 7.50
0.3 1632.9 44.9 6.62
0.4 1624.5 43.8 7.30
0.5 1632.3 44.9 6.96
0.6 1623.5 43.8 7.56
0.7 1624.9 42.6 7.31
0.8 1650.6 43.8 6.80
0.9 1641.7 44.9 7.61
1.0 1626.9 43.8 7.11
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Figure 12. Influence of crossover rate on GA.

As shown in Table 1 and Figure 12, the total delivery time fluctuates along with the
change of crossover rate. It is obvious that when the cross rate is set up as 0.7, the delivery
has the minimum of the total time. However, it has little effect for crossover rate on the
calculation time of the GA. Because the crossover operation is of a significant concern to
genetic operations, a crossover rate causing a major effect on the calculation time should
be selected. Therefore, crossover rate 0.7 is selected for the experiment.

Similarly, mutation rate ranges from 0.1 to 1.0, and crossover rate is set as 0.7. The
total delivery time and the calculation time are shown in Table 2 and Figure 13.

Table 2. Influence of mutation rate on GA.

Mutation Rate Total Distance (m) Total Time (min) Calculation Time (s)

0.1 1624.9 42.6 7.31
0.2 1868.0 48.5 14.81
0.3 1875.9 50.9 21.16
0.4 1747.5 47.3 31.72
0.5 1885.1 50.9 32.44
0.6 1797.5 46.2 48.30
0.7 1850.1 49.7 53.08
0.8 1596.0 41.4 79.54

Figure 13. Influence of mutation rate on GA.
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As shown in Table 2 and Figure 13, when mutation rate is set up within the range
from 0.1 to 0.7, the total delivery time shows an upward trend, along with an increase in
mutation rate. When mutation rate is set up to 0.8, the delivery time witnesses a downward
trend. Moreover, the calculation time increases linearly with the increase in mutation
rate. A higher mutation rate means that the algorithm tends to perform random searches.
Therefore, in this paper, setting mutation rate to 0.1 is rational for the quality of the solution.

In order to realize indoor route planning based on SLAM rapidly, parameters of the
algorithm are selected in Table 3, and the corresponding parameters to the targets are
shown in Table 4.

Table 3. Related parameters of the indoor route planning algorithm.

Parameters Values Symbols

Population size 20 L
Crossover rate 0.7 Pc
Mutation rate 0.1 Pm

Gene exchange times 5 J
Penalty weight (minutes) 100 Pw

Hill climbing exchange times 25 Ph
Maximum iteration times 300 Pn

Local maximum iteration times 50 Pt
Maximum speed 2 vmax

Maximum acceleration 1.75 umax
Maximum delivery load 8 Q

Table 4. Parameters of targets.

Targets x (m) y (m) f (Floor) q (kg)

1 19.2 42.5 1 1.5
2 27.6 17.0 7 0.4
3 23.1 83.2 8 1.7
4 28.4 76.0 5 1.5
5 23.3 58.1 2 1.7
6 4.4 43.3 9 0.9
7 23.9 38.0 2 0.8
8 20.9 42.7 7 1.3
9 26.8 10.5 8 1.2
10 20.7 26.2 9 0.4
11 10.0 84.5 3 1.3
12 22.2 13.0 1 1.3
13 2.7 43.5 11 0.6
14 25.5 55.6 3 1.5
15 19.1 5.2 6 1.7
16 0.3 14.7 3 1.9
17 28.8 99.0 2 0.1
18 27.8 75.5 4 1.6
19 9.6 28.0 8 1.1
20 22.4 74.8 8 1.2

For the purpose of verifying the effectiveness of this proposed algorithm (A*+GAHC),
the traditional algorithms Dijkstra (Dijkstra+GAHC), BFS (BFS+GAHC), HC (A*+HC) and
GA (A*+GA) are compared in the experiment. The above five algorithms are each tested
10 times, and the delivery times are shown in Table 5 and Figure 14.
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Table 5. Delivery time (minutes) in various algorithms.

No. Djistra+GAHC BFS+GAHC A*+HC A*+GA A*+GAHC

1 41.7 82.7 48.2 47.6 43.0
2 42.4 53.7 42.3 48.4 43.4
3 40.2 101.2 42.9 47.3 42.2
4 40.6 63.4 41.5 47.0 44.0
5 41.0 67.8 50.3 48.9 41.5
6 40.7 70.9 41.7 48.2 42.5
7 41.8 62.0 46.9 49.2 42.4
8 41.2 49.7 42.6 50.3 40.8
9 40.7 75.2 44.3 46.1 41.8

10 41.0 67.9 41.3 49.2 43.7

Figure 14. Delivery time in various algorithms.

As shown in Figure 14, the data of Dijkstra+GAHC, A*+HC, A*+GA and A*+GAHC
are relatively stable and different from each other in the same environment and objectives. It
should be noted that the data of BFS+GAHC fluctuate greatly. To analyze the experimental
data more clearly, the four indexes including average delivery distance, average delivery
time, standard deviation of solutions and average calculation time are analyzed. The results
are shown in Table 6.

Table 6. Comparison of results after calculated in various algorithms.

Algorithm Average Delivery
Distance (m)

Average Delivery
Time (min)

Standard Deviation
of Solutions

Average Calculation
Time (s)

Dijkstra+GAHC 1597.3 41.1 0.63 309.62
BFS+GAHC 2712.3 69.7 14.73 16.36

A*+HC 1684.5 44.2 3.01 6.82
A*+GA 1767.6 48.2 1.18 11.62

A*+GAHC 1624.7 42.5 0.96 7.31

Time and energy cost are sensitive in logistics actuators. Therefore, the average
delivery time and the average delivery distance are firstly selected for analysis. The
average delivery time indicates the time cost of the intelligent system, and the average
delivery distance reflects the energy cost of the actuator. Moreover, there is a correlation
between the average delivery time and the average delivery distance in this experiment, as
shown in Figure 15.
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Figure 15. Average delivery time and average delivery distance in various algorithms.

As revealed in Figure 15, the shortest average delivery time is achieved through
Dijkstra+GAHC. The second shortest average delivery time is obtained by A*+GAHC,
which is only 3.4% slower than that of Dijkstra+GAHC. It is worth noting that the longest
average delivery time is gained by BFS+GAHC. The reasons can be analyzed as follows.
Dijkstra+GAHC based on Dijkstra is a greedy strategy, which traverses all potential nodes
through breadth first search. Therefore, Dijkstra+GAHC can find the optimal solution more
accurately and stably. BFS-based BFS+GAHC can achieve the aim of single fastest delivery
due to the tendency of goal orientations. However, BFS+GAHC may become stuck in the
bilateral or multilateral traps, which leads to unstable and long delivery times. The A*+GA,
A*+HC and A*+GAHC based on A* algorithm can ensure stability and make the solution
approach the optimal solution of the problem. Moreover, A*+GA, A*+HC and A*+GAHC
still have some differences in solving multi-objective distribution problems: A*+HC can
find the optimal solution quickly in local through HC algorithm, A*+GA can analyze the
problem globally by GA to ensure the stability of the solution and A*+GAHC combined
with HC and GA can ensure the stability and rapidity of the solution, and its average
delivery time is closer to the optimal solution than the performance of other algorithms.

Secondly, as an important index in the system, the average calculation time reflects
the ability to replan the route for special situations encountered in the distribution process.
Before the delivery of the logistics actuator, the system analyzes and calculates the distribu-
tion scheme for the environment. Therefore, the lower the index, the higher the robustness
of the system. As shown in Figure 16, Dijkstra+GAHC based on Dijkstra algorithm requires
a large amount of computation, which is about 30 times greater than other algorithms
because it traverses all potential nodes. BFS+GAHC has a long calculation time for the
tendency of the BFS algorithm to the target orientation. A*+GA, A*+HC and A*+GAHC,
based on A*, have a relatively stable trend in calculation time. A*+HC based on HC has the
fastest calculation time due to the fact that the global situation does not need to be consid-
ered. For A*+GA based on GA algorithm, more calculation time is allocated in the global
solution process. A*+GAHC, combining HC and GA algorithm, has a strong robustness,
and the calculation time is only 7% slower than the fastest delivery time through A*+GA.
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Figure 16. Average calculation time in various algorithms.

In the total distribution process, the average time T is generally used as a main index,
and its calculation equation is as Equation (12):

T = αt1 + βt2 (12)

where t1 is the average delivery time, t2 is the average calculation time and α and β are the
weights related to calculate the average time.

In the process of this experiment, the distribution environment is relatively stable, and
there is no need to replan calculation and redistribution. Therefore, the weights are set as
Equation (13):

α = β = 1 (13)

As shown in Figure 17, the average time in Dijkstra+GAHC even surpasses the average
time in A*+HC or A*+GAHC because it increases the calculation time. Compared with
other algorithms, A*+GAHC proposed in this paper has an advantage of 22.7% in reducing
average total time cost.

Figure 17. Average total time in various algorithms.
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Thirdly, the standard deviation of solutions displays the stability of the algorithms.
As shown in Figure 18, Dijkstra+GAHC has the strongest stability because it traverses all
potential nodes. Due to the greed tendency, and the standard deviation in BFS+GAHC is
generally higher than other algorithms. The algorithm A*+GAHC, combining GA and HC,
has the smallest standard deviation and strong stability.

Figure 18. Standard deviation of solutions in various algorithms.

Five algorithms in the experiment have distinct characteristics. Moreover, these
different characteristics in environments affect the experimental results to some extent,
which is shown in Table 7.

Table 7. Main characteristics and environments that impact the effects of each algorithm.

Algorithms Main Characteristics Environments that Impact the Effects

Dijkstra+GAHC The most accurate analysis, but the longest
computing time. A large number of nodes.

BFS+GAHC The fastest analysis, but poor stability and effects. Traps between nodes.

A*+HC The fastest time to find the local optimal solution,
but unstable global solutions. Wide distribution of global solutions.

A*+GA
The fastest time to find the global optimal solution

range, but the local optimal solution
cannot be locked.

Monotonic global solution.

A*+GAHC The best effect, the strongest robustness and both
global and local optimal solutions are considered. Complex algorithm design.

Therefore, the following conclusions can be drawn from the above experimental analysis:

(1) Dijkstra+GAHC has a strong analysis ability both locally and globally and can find
the optimal solution in multi-objective distribution tasks. However, a large amount of
data and long calculation times in the analysis of Dijkstra lead to poor robustness and
long total time.

(2) BFS+GAHC has the fastest single delivery time, but it takes a long time for calculation
and has the poorest stability due to the randomness of the BFS algorithm.

(3) A*+HC and A*+GA are near-optimal solutions in delivery time and can ensure shorter
calculation times and strong stabilities at the same time. However, A*+HC, based
on the local solving ability of the HC algorithm, still has some shortcomings in the
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multi-objective distribution problems. Similarly, A*+GA, based on the global solving
ability of the GA algorithm, has the weakness of a long calculation time.

(4) A*+GAHC proposed in this paper makes the delivery time approach the optimal
solution through the A* algorithm, while ensuring less calculation time and a strong
stability. Moreover, in multi-objective distribution problems, the integration of the
HC and GA algorithms places the logistics system in an efficient and stable state.

4. Conclusions

Compared with outdoor logistics distribution based on high precision GPS, this paper
designs and implements an intelligent wheeled actuator to improve the efficiency of indoor
logistics distribution. The proposed system includes a wheeled actuator, intelligent eleva-
tors and a remote logistics center. Firstly, this paper proposed a novel multi-sensor fusion
method which was applied to the intelligent actuator of an indoor logistics system. Then,
through the SLAM method of multi-node interconnections based on a wireless communi-
cation network, the function of cross-floor route planning and distribution was realized.
Finally, this paper proposed a novel A*+GAHC algorithm to improve the distribution
efficiency of the actuator in an indoor logistics system. An advantage of 22.7% reduced
average total time cost was confirmed by comparing A*+GAHC with other algorithms.
Through the test in the real scenario, experimental results have shown that the wheeled
actuator can improve the delivery efficiency and reduce the route planning time. The
final delivery task by autonomous driving can be completed accurately. Therefore, with
further technologies of AI and autonomous driving, more advanced scenarios and complex
algorithms can be applied in our daily lives, and the labor costs in logistics system will be
greatly reduced.
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