
System Revenue Maximization for Offloading
Decisions in Mobile Edge Computing

Juan Zhang, Yulei Wu, Geyong Min
College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK

Email: {jz397, y.l.wu, g.min}@exeter.ac.uk

Abstract—Offloading decisions in mobile edge computing have
been extended with multiple objectives, such as revenue maxi-
mization, energy conservation and latency reduction. Revenues
of network/service operators, as the realistic and ultimate goal at
intensive competitive markets, have not been thoroughly studied
under a pricing scheme in combination with offloading decisions,
especially with the aims of reducing and restricting energy
consumption and latency. To bridge this important gap, this
paper studies the revenue maximization of network operators
through a pricing scheme in mobile edge computing, by explicitly
formulating energy consumption and latency into the offloading
strategy. A two-stage game-theory framework based on the
Stackelberg game is established, through which the optimal price
for both the network operator and the customer can be reached.
The offloading data size can be dynamically adjusted according to
the agreed price. The existence of equilibrium in the Stackelberg
game is proved, and experiments are conducted to verify the
effectiveness of our proposed model.

Index Terms—Revenue maximization, offloading, mobile edge
computing, energy consumption, game theory

I. Introduction

Mobile edge computing (MEC) carries out computing tasks
at the network edge in a broad range of industries under
the support of 5G [1]. This computing paradigm is a good
candidate to satisfy the expectations of ultra-reliable and
latency-sensitive applications such as unmanned vehicles [2].
European Telecommunications Standards Institute (ETSI) is-
sued the first edition white paper “Mobile Edge Computing-A
key technology towards 5G” to elaborate the business value,
the market drivers and the service scenarios of MEC [3].
Offloading in MEC brings new sophisticated applications by
reducing energy consumption. Problems including proper se-
lection of programming models, accurate estimation of energy
consumption, virtual machine migration, have been raised and
studied under specific scenarios. However, there is limited
research in exploring the offloading decisions in MEC from the
perspective of economics, such as revenues of network/service
operators.

A. Motivations

Network economics is a result of the collaboration among
communication, energy and finance, to tackle the real-world
issues surrounding the decision-making in network strategies
[4]. For example, profits of Edge Infrastructure Providers (EIP)
were optimized in resource management of edge computing,
where Cosimo et al. [5] presented an Online Profit Maximiza-

tion (OPM) algorithm aiming to increasing the profit of EIPs
without any priori knowledge.
However, most studies focusing on the optimization of en-

ergy consumption and time latency of offloading decisions in
MEC ignore the important practical issues of cost and revenue.
For instance, in fog computing, intelligent approaches were
proposed for energy and latency reduction by detecting user
behaviours and analyzing offloading decisions [6]. The speed
perception, instantaneous response time and performance in
massive data communications drive the effective decisions-
making strategies in MEC.
There is no proper scheme of maximizing the revenue of

service operators considering pricing schemes into offloading
strategies that are formulated with energy consumption and
time latency. The less cost in the computation and the of-
floading system, the more profits of the operator will gain.
Therefore, even the energy consumption and the latency in
MEC have been well studied, the research of offloading in
MEC should still move forward with the purpose of revenue
maximization of service operators.

B. Contributions
The main contributions of this paper are summarized as

follows: 1) The offloading problem in MEC is formulated
by a two-stage game model with the purpose of the tradeoff
between network operators and mobile users in the price
competition game. 2) The subgame perfect equilibria in the
above formulated model are achieved for the instantaneous
strategies, by which the best response of offloaded data size
and the agreed price between network operators and mobile
users are reached. The latency and energy consumption of the
system can thus reach to the ideal equilibrium states.
The rest of this paper is organized as follows. In Section

II, the related work is presented. Section III introduces the
system model. Section IV describes the details of our game
mechanism, followed by the equilibrium analysis in Section V.
The experimental results and analysis are presented in Section
VI. Finally, Section VII concludes this paper.

II. Related Work
Offloading in MEC has been widely researched in the litera-

ture. Energy consumption of an offloading system in both task
computing and file transmission was investigated in [7]. Radio
resource allocation and offloading for the energy conservation
under the constraint of latency were jointly optimized by the
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energy-efficient computation offloading (EECO) scheme [8].
An interactive search algorithm was proposed for the energy-
latency tradeoff by combining an interior penalty function with
the difference of two convex functions programming to find
the optimal solution [9]. Huang et al. [10] proposed a bilevel
optimization approach for the joint offloading decision and
resource allocation with the purpose of profitability improve-
ment of operators. It is noticed that most of existing offloading
algorithms aim at minimizing the energy consumption of
mobile users, while meeting the latency constraints.

The tradeoff between energy consumption and latency has
been extended to full offloading and partial offloading studies.
In MEC, increasing attention has been paid in optimization of
services provision performance and cost efficiency of network
operators, which are manifested in the study of core networks,
radio access networks and mobile users distributions. The
conflicts between mobile users and operators in terms of
size in data offloading and profit maximization should be
further explored for economic effectiveness [11]. Xiong et al.
[12] proposed an MEC enabled blockchain game system, and
modeled a hierarchical stackelberg game to solve the resource
management in fog computing networks by pricing strategies.

Social welfare maximization was achieved by avoiding the
strategic problems of analytical models [13]. An auction mech-
anism was demonstrated to ensure the truthfulness, individual
rationality and computational efficiency in [14], where edge re-
source allocation was formulated into the blockchain network
as an optimization constraint of social welfare maximization.

III. The System Model

A. System Architecture

We consider the sets I = {1, ..8.., �} and J = {1, .. 9 .., �}
denoting mobile users (MUs) and network operators (OPs),
respectively, where 8 stands for the 8th MU and 9 is the
9 th OP. The details of the system architecture are shown in
Fig. 1. Once an MU requires MEC services, an offloading
request will be sent from the MU to an OP to negotiate an
offloading strategy. Latency and energy consumption of the
uploading through uplink, computation at MEC deployed in a
base station (BS) and downloading through downlink for tasks
will be formulated as the hard constraints in the model for the
irreversibility of offloading [15]. In contrast, the latency and
energy consumption of tasks processed locally are the variable
constraints. An agreed price and size of data for offloading
will be confirmed as the offloading strategy with the purpose
of revenue maximization for OP. The local CPU frequencies
of MUs can be denoted as k8 ∈ {k1, ..., k� }. It is assumed
that MU 8 can process the data in bits in [0, Ḡ], where Ḡ8 is
the total bits of data that MU 8 can execute or the upper bound
of offloading data size to MEC. G8 is the data size that will be
offloaded to MEC. Thus, (Ḡ8 − G8) represents the bits of data
that are executed locally by MU 8.

Fig. 1: The System Architecture.

B. Local Computing at MUs
Latency of local computing can be represented as

C"*8 = (Ḡ8 − G8)
08

k"*
8

(1)

where 08 is the required number of CPU cycles to process a
bit of data at an MU, and k"*

8
is the computational power

(frequency) of the MU. The energy consumption of local
computing can be represented by

�"*8 = f"*8 × C"*8 (2)

where f"*
8

denotes the consumed energy per CPU cycle.

C. Mobile Edge Computing
Consider the physical layer characteristics of a network, the

latency of MEC can be expressed with

C��8, 9 =

(
18

W
D?

8, 9

+ G8
0 9

b 9
+ 28

W3=
9,8

)
(3)

where G8 is the data size offloaded to and computed in MEC.
0 9 is the service rate required by G8 in the MEC server 9 , which
is the number of CPU cycles for one bit of data computation.
b 9 is the assigned computational speed of server 9 to user 8,
where b8 = b̄ 9/�, b̄ 9 is the total computational resource, and �
is the number of MUs. 18 and 28 are the input and output data
size to and from the MEC server, respectively. WD?

8, 9
and W3=

9,8

are the data rates when uploading and downloading the data
during the communication. The uplink data rate of uploading
to an MEC server can be formulated as [16]

W8, 9 =
,

�
;>62 (1 +

?
D?

8
�8 9

,
�
l
),∀8 ∈ {0, �}, 9 ∈ {0, �} (4)

where , is the total bandwidth of the channel, and ,
�

is
the allocated bandwidth for the uplink of MU 8. �8 9 is the
channel gain of MU 8 to the MEC server 9 . l is the background
noise power. ?D?

8
is the transmission power of MU 8, which

can be obtained through the power control algorithm [17]. %8
and SIR8 (:) correspond to the power level and the signal-to-
interference ratio for MU 8 offloading tasks to an OP at the
:th iteration. Let �8 9 > 0 be the power gain (also known as
propagation loss) of the 9 th MEC to the 8th MU. We define
the interference power received at the base station 9 from the
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uplink of MU 8 as �8 9% 9 . The power control can be expressed
by the uplink transmission data rate with

%8 (: + 1) = W8

(�'8
%8 (:) =

W8

(∑
9≠8 �8 9%8 + \8

)
�8 9%8

%8 (:) (5)

where \8 is the thermal noise power at the 8th MU, and W8
is the desired SIR threshold, 8 = 1, 2, ..., =. The constraint
(�'8 ≥ A8 is enforced for each MU. The optimal power ?∗

8

is either ?̂8 or 0, leading to the large utility. Because of the
low latency and energy consumption of the result (normally
a value) downloaded from MEC to an MU, the latency and
energy cost for downlink process can be ignored. Therefore,
the energy consumption of an MEC can be illustrated as

���8 = ?
D?

8

1 9

W
D?

8, 9

+ ? 9G8
0 9

b 9
(6)

where ?D?
8

denotes the transmission power of MU 8 for data
uploading. ? 9 is the computation power of the MEC server.
The problem of this paper is described and formulated in
Section IV.

IV. Game Mechanism
In this section, the latency and energy consumption in local

computing and through offloading are formulated to assess the
offloading decision making in our proposed two-stage game
model.
A. Cost of Offloading

Each mobile user determines whether to offload its data G to
the MEC server, which can be expressed with binary offloading
decision 58 ∈ {0, 1}. 58 = 0 means that MU 8 decides to execute
the data G8 locally, and 58 = 1 denotes that the MU performs
the data offloading to the MEC server.

58 =

{
1, c ≤ 1

k8
,

0, otherwise.
(7)

where the offloading threshold 1
c

is greater or equal to the
local MU 8’s CPU frequency k8 . The optimization problem of
the system cost � (x, f, t, E) can be formulated with weighted
sum of energy consumption and latency as

C(x, f, t, E) =
�∑
8=1

(
-∑
G=1

(
�"*8G (1 − 58G) + ���8G 58G

)
+ Vmax

{
C"*8 , C��8, 9

} ) (8)

where x = {G8 |8 ∈ I}, f = { 58G |8 ∈ I, G ∈ X}, and V is the
weight of latency for performing computation locally and
in MEC servers. Based on Eq. (8), the cost for the task x
can be seen as a mixed-integer programming problem, which
jointly integrates MU 8’s offloading decision strategy into
the minimization objectives of the energy consumption and
latency. It is expressed as

C∗ (x∗) = min C(x, f, t, E)

s.t.
�∑
8

G8 ≤ -̄, G8 ≥ 0,∀8 ∈ I, 58 ∈ {0, 1}
(9)

where the constraints mean that the uplink power is 0, or
positive but not exceeding the maximum energy capacity.

B. Price Anarchy

The pricing starts from the broadcast of the service price
c$% from an OP after an offloading request sent from an
MU. As the feedback, the MU follows the step with offering
its acceptable price c"* accordingly. After receiving the
response, the OP updates its quoted price in next round of price
offer. A stable equilibrium price will be reached by enough
rounds of iterations, otherwise the offloading service request
will be rejected by the OP. Compared to the dynamic pricing
evolutionary strategy, static pricing strategy may experience
the loss of utility in reaching the equilibrium, especially when
the evolution process is long [18].

C. Offloading Data Size Adjustment Model

The reached price of the dynamic process affects the size of
the offloading data. In this paper, we study the best-response
of the Nash equilibrium in price, and adjust the offloading data
size to MEC servers according to the reached price. The game
competition model of the pricing process is demonstrated in
the Stage 1 in Fig. 2, which facilitates the update of the
offloading data size in the offloading decision. The equilibrium
price c∗ can be achieved by the iterative competition through
the offered price c$% of OP and the c"* of MU. Then,
the size of data offloaded to the MEC server can be adjusted
accordingly, which is described in the Stage 2 in Fig. 2. The
Stage 1 and Stage 2 are defined as the Leader and the Follower
in the game. This backward induction of the interactions in the
Stackelberg game is introduced in two problems as follows.

Fig. 2: Two Stage Price-Data Offloading
Model.

Fig. 3: Two Stage games Iteration Process.

1) Pricing Strategy in Stage 1: The profit of an OP is the
difference of revenue obtained by charging from the customers
and the cost spending on data offloading. The unit cost of the
energy for the offloading service is denoted by [. Thus, the
utility of an OP can be expressed as

Φ(c8 , 0̂−8 , x) =
∑
8∈I

∑
G∈X

c8G808 −
∑
8∈I

∑
G∈X

[���8 (10)

The incentive mechanism of BSs for MUs offloading is
introduced due to the market competition [19]. The random
variable of the price follows the standard normal distribution
0 ∼ # (0, 1). To avoid the confusion of the constant with
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price, the constant of the normal distribution is denoted by
c̀. Therefore, the utility performance is expressed as

Φ(c8 , 0̂−8 , x) =
∑
8∈I

∑
G∈X

c8G808

(
1
√

2c̀
4−

c2
8

2

)
−

∑
8∈I

∑
G∈X

[���8

(11)
where x8 = (x1

8
, ..., x-

8
) is the offloading data size, c8 is the

price agreed by 8th MU, 0̂−8 is the prices of MUs excluding the
price of MU 8. The pricing strategy of an OP follows Gaussian
distribution for revenue maximization under constraints. c ∈
[0, c̄] is defined as the net payoff per time slot.

Φc , qc

(
1

d
√

2c
4
− (c−`)

2
2d

)
(12)

ΠG , cG

(∑
8∈I

∑
G∈X

;>6 (1 + G8)
)
− �8 (13)

where the 1√
2 c̀
4−

c2
8

2 term1 represents the diminishing utility
of all data flow from offloaded data size G8 . �8 represents the
cost of the offloading of data size G8 . Function Φc (x∗, 5 , t∗,E∗)
represents the total utility of all offloaded data from all MEC.
Suppose that the function qG is continuously differentiable,
such as q′G > 0, q′′G < 0 and qG (0) = 0.
Problem 1. (stage 1 sub-game, Leader): The utility of the

leader is shown as
c∗ =max

c
Φ(c8 , 0̂−8 , x, � (C, �))

s.t. c 9 ∈ [0, c̄] , G8 ∈ [0, Ḡ]
(14)

where c is the price for MEC computing service. x stands for
the data service vector, and G 9 is the offloading data serviced
by operator 9 .

2) Offloading Strategy in Stage 2: The cost utility of MU
8 can be formulated through the latency and the payment of
energy consumption

�"*8 (G8 , c8) =
{
(c8 − 1

k8
)G808 + Ḡ808

k8
, 0 ≤ G8 ≤ A8 ,

C��
8, 9
+ c8G808 , A8 < G8 ≤ Ḡ8 .

(15)

where
A8 =

Ḡ808(
1
W
D?

8, 9

+ 0 9

b 9
+ 1
W3=
8, 9

)
k8 + 08

(16)

is the threshold of data size offloaded to MEC.
Problem 2. (stage 2 sub-game, Follower): Suppose that

there exists a Nash equilibrium point G∗
8
satisfying

�∗ (G∗8 ) = min
G8

C"*8
(
(G1
8 , 5 , C, �), ..., (G-8 , 5 , C, �)

)
(17)

C"* (G8) = min
G8

∑
8∈I

C"*8 (18)

where x is the data size of MUs for processing.
These two problems integrate the two parts of the Stackel-

berg game. The equilibrium utility under the best response of
the data offloading can be described as follows.

1This term can be replaced by other types of utility functions.

Definition 1. Suppose that 0̂∗and x∗ are the optimal price
of service offered by the network operator, and the data size
vector offloaded to MEC, respectively. The point (0̂∗, x∗) is
the equilibrium point of this game if the condition holds
Φ(c∗8 , 0̂∗−8 , x∗) ≥ Φ(c8 , 0̂∗−8 , x∗),∀c8 ≥ 0, 8 ∈ I 0=3

DG (x∗, 0̂∗, �∗(t, E)) ≥ DG (x, 0̂∗, �∗(t, E))
(19)

where x∗ is the best response of data vector offloaded to MEC.
0̂ = {c8 |8 ∈ (�)} and 0̂−8 is all prices excluding c8 .

The prices to different MEC services of BSs offered by
the OP are supposed to be the same, which means there is
no discriminatory pricing strategy in the game. Therefore, we
focus on the utilities of local processing, MEC computation,
and the revenue maximization of the OP. The iterative process
of the data offloading and pricing is shown in Fig. 3.

V. Equilibrium Analysis
The backward induction is introduced in this section, by

which we analyze the optimal price and offloading strategy to
maximize the utility of an OP.

A. Leader’s game: Pricing Game
Given the data size G in Stage 2, an OP plays with

communicated MUs to maximize its utility, which forms the
non-cooperative game. The strategic bargaining process is
performed and described in Pricing Game (PG) with GD =
{ , {G: }:∈ , {Π: }:∈ }, where : ∈  = {I = {1, ..., �}, J =
{1, ..., �}}, and  is the set of players. {G: }:∈ is the strategy
set of offloading, and the {Π: }:∈ represents the utility when
the strategy is G: . Therefore, the utility maximization can be
rewritten as Π(c8 , c̄−8 , G). Once G is fixed, the latency and
energy consumption are determined in Stage 2. Then the utility
of Π in Stage 1 can be maximized and the uniqueness of Nash
equilibrium of the PG can be proved.

Definition 2. The price vector 0̂∗ = (c∗1, ..., c
∗
�
) is the Nash

equilibrium of the PG GD = { = {I, J}, {c: }:∈ , {Π: }:∈ },
if each player meets : ∈  , Φ: (c∗, x∗) ≥ Φ: (c, x∗), all c: ∈
[0, c̄], where Φ: (c, x∗) is the utility under agreed prices.

Theorem 1. A Nash equilibrium exists in PG GD =

{ , {c: }:∈ , {Φ: }:∈ }.

Proof: The strategy space of PG is c: ∈ [0, c̄], which is
not empty and not concave. Due to the continuity of the Eq.
(11), Eq. (10) can be expressed as

Φ =
∑
8∈I

∑
G∈X

c8G808

(
1
√

2c̀
4−

c2
8

2

)
−

∑
8∈I

∑
G∈X

[���8 (20)

m2Φ

mc2
8

=
∑
8∈I

∑
G∈X

[(
1
√

2c̀
4−

c2
8

2

)
G808c8

(
c2
8 − 3

)]
(21)

Therefore, the concavity or convexity of Φ depends on(
c2
8
− 3

)
with respecting to c8 .

m2Φ

mc2
8


< 0, c8 ∈

(
0,
√

3
)
,

= 0, c8 =
√

3,
> 0, c ∈

(√
3, +∞

)
.

(22)
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when c8 ∈
(
0,
√

3
)
, the Φ is concave and the optimal price

exists for the maximization of payoff. The existence of the
Nash equilibrium is proved.

Theorem 2. The uniqueness of the Nash equilibrium in the
non-cooperative PG is reached.

Let the first derivative of Eq. (20) be 0 for the response of
PG. The price c8 =

√
3, G8 ∈ [0, Ḡ]. Therefore, Theorem 2 is

concluded and the proof process is provided.

B. Follower’s game: Minimization of Utility in Energy Con-
sumption and Latency

Given the price c of Stage 1, the offloading data size can
be formulated as the cost minimization problem. Because 0 <
A8 < Ḡ. The profit can be described and analyzed as follows.

Definition 3. The offloaded data size x∗ = (G∗1, G
∗
2, ..., G

∗
#
)

is optimal satisfying �8 (c∗, x∗8 , C8 , �8) ≤ �8 (c∗, x8 , C8 , �8),
where

G∗8 (c) = A8 58 , 8 ∈ I (23)

Proof: According to the optimal c, the best solution of the
Problem 2 is

G∗8 (c) =


A8 , c < 1

k8
,

(0, A8) , c = 1
k8
,

0, >Cℎ4AF8B4.

(24)

The probability for case c = 1
k8

is 0, therefore, let G8 = A8 , the
cost minimization at the edge side can be concluded as

max
G≥0

D8 (G) = G
�∑
8=8

A8 58k8 (25)

Theorem 3. Through the optimal price of the stage 1, the OP
can obtain the profit optimization.

Definition 4. The offloaded data size vector x∗ =

(G∗1, G
∗
2, ..., G

∗
#
) is the Nash equilibrium of the coopera-

tive game, if the two players satisfy D: (c∗, x∗: , C8 , �8) ≥
D: (c∗, x: , C8 , �8).

Theorem 4. Consider a multistage game with T stages. If
f1∗, f2∗, ..., f) ∗ is a sequence of Nash equilibria strategy
profile for the independent stage games, there exists a subgame
perfect equilibrium in a multistage game where the equilibrium
path coincides with the path generated by f1∗, f2∗, ..., f) ∗.

VI. Performance Experiments and Analysis
In this section, we conduct numerical experiments to verify

the effectiveness of the proposed model. The power gain is
set as 600W from base station to MU, which is consistent
with base station systems [20]. Local CPU frequencies of
MU k are selected from {0.1, 0.3, 0.5, 0.7, 0.9}GHz, which is
equal to {1, 3, 5, 7, 9}×108Hz. Local CPU cycles 0"*

8
is set

in [1000, 2000] cycles/bit. Service rate of edge server 0��
9

,
known as CPU cycles per bit, is 15000 cycles/bit [9]. Energy
consumption per CPU cycle of MU f"*

8
is 1

480×106 J/cycle
[21]. The CPU frequency of edge server b 9 is assumed to be

Algorithm 1 Optimal Pricing Strategy for Game (OPG)
Input: Initialize iteration times = of MU 8, 8 = # and c8 =

1/k8 . CPU frequency k=
8
, CPU cycle price for an MU,

G=
8
= 1/k=

8
, local execution latency and energy C"* , �"* ,

MEC execution latency and energy C�� , ��� .

Output: �"*
8
(G8 , c8) =

{
(c8 − 1

k8
)G808 + Ḡ808

k8
, 0 ≤ G8 ≤ A8 ,

C��
8
+ c8G808 , A8 < G8 ≤ Ḡ8 .

1: G∗
8
← A8 58

2: According to the optimal price, the payoff of
the corresponding operator can be obtained from

Φ(c8 , 0̂−8 , x) =
∑
8∈I

∑
G∈X

c8G808

(
1
√

2c̀
4−

c2
8

2

)
−

∑
8∈I

∑
G∈X

[���8

3: if
∑�
8=1 G

∗
8
(c=
8
)k8 ≤ k̄ then

4: =← = − 1,
5: update the price c=−1

8
= 1/k=−1

8
;

6: else
7: Φ(c=) = 0;
8: end if

TABLE I: Experimental settings

Parameters Meaning Values
Ḡ Total tasks 1Mbits=106 bits
�8 9 Channel gain of MU

to edge server -30 dBm
l Background of noise power -180dBm/Hz
?D? Uplink power 0.1W =20dBm
?3= Downlink power 1W=30dBm
? 9 The computation power of the MEC

server 750W=58.75dBm
WD? Data rate of uploading 3Mbps=3 × 106 B/s
W3= Data rate of downloading 1Mbps=106 B/s
,D? The total channel bandwidth of

uplink 10MHz
,3= The total channel bandwidth of

downlink 10MHz
\ Thermal noise power -104dBm/HZ

6 × 109 cycle/s. The total CPU cycles of computing for the
sum of offloaded data &̄ is 8 × 109 cycle/s, and the cost of
unit energy of the edge service [ is 0.3. The other settings of
the experiments are shown in Table I, which are in line with
the parameter settings in [9], [10], [22].
The variations of offloading data size with

different parameters in the continuous games are
demonstrated in the results. Fig. 4 shows the latency
comparisons of 5 MUs under different sizes of tasks[
5 × 106, 3.5 × 106, 2.5 × 106, 1 × 106, 0.7 × 106] with
different computing modes. Along with the decrease of tasks
size, the latencies decline accordingly, and the proposed
solution OPG spends the least time, which is caused by the
energy restriction during the offloading. Fig. 5 displays the
convergence time of 5 MUs with different task sizes under
the proposed OPG. Experiments are executed five times for
each task size, and the average convergence time reduce due
to the decreases in task sizes.
Fig. 6 shows the revenues of OP corresponding to 5 MUs

under different sizes of tasks. The MU 5 has the least data
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size in MUs, but it contributes the largest revenue share for
OP in the MEC computation. MU 1 with the largest task size
unexpectedly help the OP gain the second-last revenue in the
rank. MU 3 contributes the least revenue to the OP with the
third largest data size in the MUs. It is worth noting that the
revenue trend shows the amount of earned revenue that is not
just depending on the data size of MUs. The proposed OPG
algorithm shows the merits in revenue maximization under the
latency and energy conservation.

Fig. 7 compares the revenues produced by the JOOA al-
gorithm [23], greedy algorithm, and the proposed OPG. The
upward lines demonstrate that the earned revenues of OP rise
along with the increase in task sizes. OPG gains the largest
revenue for OP, showing its superiority than the other two
existing algorithms. The revenue tending to smooth at the task
size 2 × 106 is caused by the incentive mechanism of market
and the cost (energy) restriction, which is benefit for OP
to determine the services provision range in the competitive
market.
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Fig. 4: Latency vs. MUs with different
tasks.
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Fig. 7: Revenue performance under different
algorithms.

VII. Conclusion

In this paper, we investigated revenue maximization for the
offloading problem in MEC and proposed an OPG scheme
which is based on the two-stage game model by integrating
the pricing-offloading strategy. Latency reduction and energy
conservation were formulated with the objective of revenue
maximization for a network operator. The proposed model
was proved, and the experiments were conducted to verify its
correctness, effectiveness and superiority.
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